Tetrahedron Letters,Vol.27,No.21,pp 2349-2352,1986 0040-4039/86 \$3.00 + .OO Printed in Great Britain

ENANTIOSELECTIVE SYNTHESIS OF DICTYOPTERENE C 6R-(-)-BUTYL-2,5-CYCLOHEPTADIENE THE PHEROMONE OF SEVERAL DICTYOTALES (PHAEOPHYCEAE)

Theo Schotten, Wilhelm Boland and Lothar Jaenicke ")

Institut fiir Biochemie, An der Bottmiihle 2, D-5000 K8ln 1, FRG

Abstract: $R-(-)$ -Dictyopterene C (1) is a widespread constituent of many marine brown algae (Phaeophyceae). A highly enantioselective synthesis of 1 and its enantiomer ent-1 via chromatographic separation of the diastereomeric γ -hydroxyphenylethylamide intermediates 3a and 3b is described.

(R)-(-)-Dictyopterene C 1 and several other unsaturated C_{11} -hydrocarbons were first isolated by R.E. Moore et al. from the Pacific seaweeds Dictyopteris plagiogramma and D. australis collected around Hawaii¹,²). Its occurrence in several North-Pacific representatives of the same genus was also reported by

Kajiwara et al.³⁾. The absolute configuration of 1 was established as $(6R)$ - by ozonolytic degradation of $R-(-)-1$ to $S-(-)$ -butylsuccinic acid²). $R-(-)-1$ was later identified by Müller et al. as the sperm attractant of female gametes of the North Atlantic phaeophyte Dictyota dichotoma⁴⁾. Very recently we found that dictyopterene C is also the major product of the egg secretions of the Australian phaeophyte Dictyota prolifera⁵). The very small amount of isolated material (ca. $5 \mu g$) did not allow for the determination of its absolute configuration. Hence, we approached this question by synthesizing $\underline{1}$ and ent- $\underline{1}$ and to eventually compare their pheromone activity for male gametes of Dictyota prolifera.

A promising route to $R-(-)-1$ of very high optical purity is the chromatographic separation of suitable y-hydroxyphenylethylamide intermediates according to the method of Helmchen⁶⁾, which also allows the inherent control of the optical purity of the products obtained $'$).

Synthesis was started with the readily available lactone⁸⁾ rac-2 which forms the two diastereomeric amides **3a** and 3b in 80% yield, if reacted with 2 eq. S- - (-)-phenylethylamine and 1 eq. 2-hydroxypyridine⁶⁾ as depicted in Scheme 1. Both diastereomers are easily separated by MPLC on silica gel (ca. 400 g silica gel loaded with the amide mixture in 1 g aliquots and eluted with hexane/- AcOEt $1:9/v: v$; $\alpha = 1.45$).

- a) 2 eq. **S-(-)** -phenylethylamine and 1 **.l** eq. 2-hydroxypyridine
- b) separation, see text
- c) 2 N **H2S04** in dioxane/water **(l:l),** 12h, 90"

The "anti" orientation of the aromatic ring and the cyclopropyl moiety in $(-)-(1S,2R)-3a$, diminishes its diastereoselective interaction with the stationary phase; therefore this amide elutes first^{7,10)} $[\alpha]_D^{25} = -151.4$ (c = 3.7, MeOH; 83% yield), clearly separated from (-)-(1R,2S)- $\frac{3b}{10}^{107}$ [α] $_{\text{D}}^{25}$ = -153.3 (c = 3.98, MeOH; 55% yield). After recrystallization from AcOEt both compounds were obtained diastereomerically pure⁹⁾ as confirmed by HPLC on an analytical column. Support for this configurational assignment comes also from the known absolute configurations of the products $2^{11)}$ and 1^{2} .

Mild acid hydrolysis⁶⁾ (2N H_2 SO₄ in dioxane/water (l/l; v/v), 16 h, 90⁰) of <u>3a</u> or <u>3b</u> furnished the two key intermediates <u>2</u> [α]²₂ = -69.5 (c = 6.8, CHC1₃), $[\alpha]_D^{25} = -61.8$ (c = 6, CHC1₃)¹¹) and ent-2 $[\alpha]_D^{25} = +68.7$ (c = 4.6, CHC1₃); both in 97% yield.

From the two optically pure lactones both enantiomers of dictyopterene C, 1. and ent-1, respectively, are readily synthesized as outlined in Scheme 2. Reductive olefination¹²⁾ of $2a$ with 1.1 eq. diisobutylaluminium hydride in toluene at -78⁰, followed by immediate addition of a "salt free" preparation of Ph₃P=CH(CH₂)₃CH₃ in THF according to Bestmann et al.¹³⁾ gives the alcohol 4,

Scheme 1

- a) 1.1 eq. DIBAH at -78° in toluene, followed by addition of 1.5 eq. "salt free" $CH_3(CH_2)$ ₃CH=P(C₆H₅)₃, then warm up to r.t., cf. ref. 12.
- b) Pyridiniumchlorochromat
- c) $CH_2=PI(C_6H_5)$ ³ in THF

 $\left[\alpha\right]_{\text{D}}^{\text{ex}} = -81.2$ (c = 2.6, ty / CH₂Cl₂) in 45% yield and -97% stereochemical homogenei-. By subsequent oxidation of $\frac{\mathbf{A}}{2}$ with pyridiniumchlorochromate and Wittig reaction of the intermediary aldehyde with Ph₃P=CH dictyopterene A isomer⁻⁻' <u>5</u>, [α] $^{1}_{D}$ = -117,6 (c = 2.4, C(₂ the already known is obtained in 53% overall yield. Upon heating to 75' CC1,) \overline{a} for five hours in a sealed vial <u>5</u> rearran_: ges in almost quantitative yield to dictyopterene C $\frac{1}{\rho}$ $[\alpha]_D^{25} = -15,5$ (c = 1.74, CHC1₃), $[\alpha]_D^{22} = -12$ (c = 7.32, CHC1₃)²). Since this sigmatropic Cope rearrangement is known to proceed stereospecifically over a cis-endo transition state¹⁶⁾, the optical purity of synthetic $\frac{1}{2}$ only depends on the stereochemical purity of the alcohol $\frac{4}{3}$ which was found to be ~97% Z; accordingly also $\frac{1}{3}$ will have 97% enantiomer excess. Hence, the optical purity of the dictyopterene C isolated by Moore et al.²⁾ was not more than ca. 75%.

By the same route, ent- $\underline{2}$ was transformed into ent- $\underline{1}$ [α] $_{D}^{25}$ = +15.1 (c = 0.69, CHC1₃) <u>via</u> the alcohol ent- $\frac{1}{2}$ [α]_{D}²⁵ = +80.0 (c = 2.2, CH₂C1₂) and the dictyopterene A isomer ent- $\frac{5}{D}$ [α] $_{\text{D}}^{25}$ = +115.3 (c = 0.89, CC1₄).

Comparative biological activity teats on male gametes of Dictyota prolifera with 1 and ent- 1 are currently under investigation. Interestingly, male gametes of Ectocarpus siliculosus, which respond enantioselectively to the structurally related pheromone ectocarpene (6S-(+)-(1Z)-buteny1-2,5-cyclohept ene) 'are unable to distinguish between <u>1</u> and ent-<mark>1</mark>. Their receptor obviously directionally recognizes the π -electron system of the extra double bond within the butenyl-subatituent.

- 1. R.E. Moore, Lloydia (Cinci.) 1976, 181.
- 2. R.E. Moore, J.A. Pettus, Jr., J. Mistysyn, J. Org. Chem. 39, 2201 (1974).
- 3. T. Kajiwara, K. Kodama, A. Hatanaka, Bull. Jap. Sot. Sci. Fish. 1980, 771.
- 4. D.G. Miiller et al., Science 212, 1040 (1981).
- 5. D.G. Müller et al., in preparation.
- 6. G. Helmchen, G. Nill, D. Flockerzi, M.S.K. Youssef, Angew. Chem. <u>91</u>, 65 (1979), Int. Ed. Engl. <u>18</u>, 62 (1979).
- 7. G. Helmchen, W. Strubert, Chromatographia 7, 713 (1074).
- 8. Racemic lactone 2 is most conveniently prepared by NaBH₄-reduction of the corresponding cyclopropyldicarboxylic acid anhydride.
- 9. Enantiomerically pure S-(-)-phenylethylamine $[\alpha]_D^{25} = -40.34$ (neat; e.e. = 99.95X), cf. ref. 6, was used.
- 0. Spectroscopic data of new compounds: $\underline{3a}$: "H NMR (CCI $_4$):0.68-1.73 $(m, 4H, cyclopropy1, sek. and tert.-CH); 1.40 (d, C_{H₃}, J=8.3); 3.60-4.05$ $(ABX-syst.$, $C\underline{H}_2OH:$ $J_{AX}=6.7$, $J_{BX}=7.3$, $J_{AB}=13.3$); 4.03 (s,0<u>H</u>); 5.03 (qi., CH(CH₃)C₆H₅); 7.28 (s,C₆H₅); 7.20 (d,-NH-). - 3b: 0.78-1.72 (m,4H, cyclopropyl, sek. and tert. CH); 1.43 (d, CH₃, J=7.3); 3.40 (s, OH); 3.43-3.98 (ABX-syst., CH₂OH: J_{AX}=5.0, J_{BX}=8.3, J_{AB}=13.3); 5.70 (qi., CH(CH₃)C₆H₅); 6.75 (d, NH); 7.30 (s, C_6H_5). - $4: 0.31$ (qu., 1H, sek. -cyclopropyl); 0.93 $(t, CH₃)$; 0.70-1.10 (m, 1H, sek.-cyclopropyl); 1.10-1.80 (m,6H,CH₂ and tert.-cyclopropy1); 1.85-2.35 (m, $CH_2CH=CH$); 2.45 (s, broad, $0\underline{H}$); 3.22-3.75 $(m, C_{\frac{H}{2}}OH); 4.90-5.70 (m, C_{\frac{H}{2}}=C_{\frac{H}{2}}). - MS (70 eV): \underline{3a}$ or $\underline{3b}: 219 M^{+}(3),$ $204(1)$, $188(21)$, $163(10)$, $120(56)$, $106(51)$, $105(100)$, $79(26)$, $77(38)$, 59(18), 55(47), 43(27). - 4: 154 $M^+(2)$, 136(2), 123(3), 110(5), 107(4), 93(13), 81(50), 79(43), 77(18), 67(100), 55(32), 54(33), 41(67), 39(31). All new compounds gave satisfactory microanalyses.
- 11. I.J. Jakovac, H.B. Goodbrand, K.P. Lok, J.B. Jones, J. Am. Chem. Soc. 104, 4659 (1982).
- 12. W. Boland, P. Ney, L. Jaenicke, Synthesis 1980, 1015.
- 13. H.J. Bestmann, W. Stransky. 0. Vostrowsky, Chem. Ber. 109, 1694 (1976).
- 14. Alcohol $\underline{4}$ is homogeneous to GC. The only evidence for a small trace (ca. 3%) of an E-contaminant was the 'H NMR of <u>5</u>.
- 15. G. Ohloff, W. Pickenhagen, Helv. Chim. Acta 52, 880 (1969).
- 16. E. Vogel, Angew. Chem. 74, 829 (1962).
- 17. D.G. Müller, W. Boland, L. Jaenicke, G. Gassmann, Z. Naturforsch. 40c, 457 (1985).

(Received in Germany 17 February 1986)